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Screened Coulomb potentialV (r) = (α + β r)/(γ + δ r) in
a semi-relativistic Pauli–Schr̈odinger equation

Miloslav Znojil†
Ústav jaderńe fyziky AV ČR, 250 68Řěz, Czech Republic

Received 6 February 1996

Abstract. The well known quasi-exact solvability of Schrödinger equation with Coulomb-like
potentialsV (r) = (α+ β r)/(γ + δ r) is shown to survive a minimally relativistic improvement
of the kinetic energy operator(1/2m)p̂2 → (1/2m)p̂2/

(
1 + (1/4m2c2)p̂2

)
.

1. Introduction

Complete solvability of the Schrödinger equation

T ψ + V ψ = E ψ (1)

with the standard kinetic energy operatorT = p̂2 ≡ −4 (units h̄ = 2m = 1) is a privilege
and merit of just a few elementary potentials (e.g., CoulombV (Er) ∼ 1/|Er|, etc [1]). Most
distortions of these forces require a perturbative or purely numerical treatment [2]. Only
after we restrict interaction to a single partial wave, may we significantly extend the class
of solvable models, e.g., via supersymmetry [3] or quantum inversion [4]. This inspired
a futher weakening of the concept of solvability to a mere finite subset of all the energy
levels [5]. The subsequent extensive study of the related partially non-numerical systems
(so called ‘quasi-exact’ models as reviewed in the magnificent monograph [6]) is not yet
finished [7].

At higher energies, the Schrödinger equation (1) is often replaced by the Dirac-type
equations [8] or, at least, improved by an inclusion of some selected relativistic corrections
[9]—one may employT = T (Pauli) = p̂2 − λp̂4, λ = 1/c2 [10] in the Pauli-type equation
(1), etc. As long as the latter choice ofT suffers from several formal shortcomings (e.g.,
the spectrum being unbounded from below), our previous letter [11] recommended a further
replacement ofT (Pauli) by its alternative representation

T = p̂2

1 + λp̂2
= T (Pauli) + O(λ2). (2)

Now, we note that for several phenomenologically interesting interactions exemplified by
the screened Coulombic forces

V (r) = α + β r

γ + δ r
(3)

the non-relativistic quasi-exact (QE) solvability may survive a transition to the relativistic
Klein–Gordon equation [12]. In the present paper, we intend to show that a similar
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‘survival’ of the QE property of the non-polynomial interaction (3) may also take place
in the intermediate-energy regime as described by our modified Pauli equation (1) with
non-perturbative kinetic energy (2).

2. Modified Pauli equation and its bound states

A trivial re-arrangement converts the modified Pauli equation (1) + (2) with an arbitrary
phenomenological potentialV (r) into a linear second-order differential equation

p̂2(1 + λw)ψ + wψ = 0 w = V − E p̂2 = − 4 .
This is our starting point: the abbreviationχ = (1 + λw)ψ restores the Schrödinger-
type prescription with a nonlinear dependence on energy. In its radial, ordinary-equation
realization

− d2

dr2
χ(r)+ `(`+ 1)

r2
χ(r)+W(r,E)χ(r) = 0 W = w

1 + λw
(4)

one has to vary the angular momentum` = 0, 1, . . . (three dimensions, central forces) or
distinguish between the two parities(−1)`+1 with ` = −1 and` = 0 (one dimension, a
symmetric well).

In our particular example (3), the couplingsα, β, γ andδ enter the Pauli–Schrödinger
equation (4) via a special form of the quasi-potential:

W(r,E) = A(E)+ B(E) r

C(E)+D(E) r(
A(E) B(E)

C(E) D(E)

)
=

(
1 0

λ 1

)(
1 −E
0 1

)(
α β

γ δ

)
.

(5)

This matrix formula is easily invertible. Under the assumptionD(E) 6= 0 we have

W(r,E) = B(E)

D(E)
+ O(1/r) r � 1

and infer the possible existence of bound states at the real and energy-dependent exponents
� = �(E) = √

B(E)/D(E) > 0 in asymptoticsχ(r) ≈ exp[−�r], r � 1.
At finite coordinatesr < ∞, a pole singularity inw(r,E) or W(r,E) must be

compensated by a zero in the wavefunction. The properly modified differential equation (4)[
− d2

dr2
+ `(`+ 1)

r2

]
[C(E)+D(E) r]χ0(r)+ [A(E)+ B(E) r]χ0(r) = 0

for

χ0(r) = χ(r)

C(E)+D(E) r
≡ ψ(r)

γ + δ r

then admits the power-series solution

χ0(r) = e−�r
M∑
m=0

hm r
m+`+1 M > 0 (6)

with h0 6= 0 and, generically, withM = ∞. Such an ansatz leads to the standard recurrences

Bm hm+1 + Am hm + Cm hm−1 = 0

Bm = − (m+ 1)(m+ 2`+ 2)C(E)

Am = − (m+ 1)(m+ 2`+ 2)D(E)+ 2(m+ `+ 1)�(E)C(E)

Cm = A(E)−�2(E)C(E)+ 2(m+ `+ 1)�(E)D(E) m = 0, 1, . . . .

(7)
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Their first few rows need not necessarily be treated numerically; we may immediately
replace them by the explicit, closed and rigorous determinantal definition of the Taylor
coefficients

hm+1 = h0
(−1)m+1

B0B1 · · ·Bm det



A0 B0

C1 A1 B1

C2 A2 B2

· · ·
Cm−1 Am−1 Bm−1

Cm Am


. (8)

Here, we shall pay attention to the special, terminating solutions only. WithhM 6= 0 and
hM+1 = hM+2 = · · · = 0 at someM < ∞, this makes recurrences (7) degenerate to
an overdetermined system ofM + 2 algebraic equations (m = 0, 1, . . . ,M + 1) for merely
M+1 arbitrarily normalized coefficientshm (m = 0, 1, . . . ,M). Hence, besides the standard
secular equation, one must also satisfy an additional conditionCM+1 hM = 0, i.e.CN+1 = 0
[6]. The latter additional QE-solvability condition implies that the matrix elementA(E)

ceases to be independent and becomes a prescribed function ofM:

A(E) = �2(E)C(E)− 2�(E) (M + `+ 2)D(E) . (9)

As a conseqeuence, we may abbreviateCm = 2(m−M − 1)�(E)D(E) and equation (8)
with m = 0, 1, . . . ,M − 1 will specify the explicit QE wavefunctions (6) completely. By
construction, these wavefunctions remain normalizable at an arbitrary energy, but the last,
m = M line of recurrences must still be taken into account. As a formal boundary condition
hM+1 = 0, it fixes the energies at their discrete physical values and may be re-assigned the
standard ‘Hill-determinant’ meaning

det



A0 B0

C1 A1 B1

C2 A2 B2

· · ·
CM−1 AM−1 BM−1

CM AM


= 0 (10)

of a secular equation with non-variational origin. Its matrix elements are real but the whole
equation does not posses a symmetric-matrix character. The presence of an imaginary
component in its energy rootsE = Ej cannot be excludeda priori [13].

Our more than ten-year-old study of the latter problem [11] was motivated by the
phenomenological importance of the linearly growing forces and paid attention just to the
δ = 0 special case of our present class of potentials (3). As a consequence, we arrived
at the conclusion that calculation of the QE energies may only be performed numerically,
due to an exceptional, degenerate form of our first QE-solvability condition (9) atδ = 0.
Indeed, after a re-scaling of the couplings (γ → 1) and with a properly shifted energy scale
(α → 0) it remains energy independent:

2(M + `+ 2)β = λ−3/2

but its right-hand-side value is very large and implies that the QE-compatible dimension
M must be also quite large for all the couplings of an immediate physical interest, say,
in quarkonium physics (β = O(1)). As long as the complexity of our secular equation
(10) increases withM, one may only generate the QE energies by a suitable numerical
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algorithm. In what follows, the linearly growing,δ = 0 special casesV (r) = α + β r of
our potential (3) will be omitted as quasi-numerical.

3. QE bound states atδ 6= 0

Let us assume that ourV (r) is asymptotically finite,δ 6= 0. As long as, identically,

V (r)− E = α + β r

γ + δ r
− E = β

δ
− E + α − βγ/δ

γ + δ r

we shall re-gaugeδ = 1 and shift the energy scale (i.e. fixβ = 0). For the physical
reasons, we shall also denoteα = −e2 andE = −κ2 and assume thate and κ are real,
α < 0 andE < 0 (otherwise, the potential would be repulsive and normalizable bound
states would not exist at all). As long as we have� ≡

√
κ2/(1 + λ κ2) < 1/

√
λ and,

conversely,κ2 = �2/(1−λ�2), binding energies will also be ‘measured’ by the exponents
� themselves.

In the light of equation (5) which givesA(E)D(E)−B(E)C(E) = α δ−β γ , our first
QE solvability condition (9) appears considerably simplified in the new notation

e2 (1 − λ�2)2 = 2(M + `+ 2)�. (11)

It may be replaced by closed formulae (i.e. the roots of a biquadratic equation, see
appendix A). In practice, it seems much easier to change our point of view and re-visualise
our first QE solvability condition (11) simply as a specification of the unique chargee2

defined as a function of the exponent� or as a function of the input or trial energyE itself,
e2 = e2(�), � = �(E).

For an illustrative demonstration of existence of at least one QE solution, let us
contemplate a trivial case first, with theM = 0 representation of the second QE constraint
(10). This givesγ = λe2/D + 1/�, i.e.

γ� = 1 + 2(`+ 2)
λ�2

1 − λ�2
M = 0. (12)

We see that our second constraint (12) defines the shiftγ in QE potential (3) as another
function of the same optional�. The numerical value of the shiftγ remains real. The
absence of a singularity ofV (r) on the real axis is guaranteed by its positivity,γ > 0.
Thus, the whole family of our QE states may be ‘numbered’ by the variable� ∈ (0, 1/

√
λ).

In the limit λ → 0, our semi-relativisticM = 0 solution degenerates to its non-
relativistic QE partner. The exponent� coincides with the momentum,� → κ. Both
these quantities acquire a fixed valueκ = e2/(2` + 4) at a particular QE-compatible
shift γ = (2` + 4)/e2. Thus, the limiting transition is smooth and our semi-relativistic
construction offers a non-standard, non-perturbative insight into the onset and/or overall
role of relativistic corrections in the QE context.

At higher truncationsM, a solution of the second QE condition (10) is less obvious.
Nevertheless, after an abbreviationZ ≡ �(E)C(E)/D(E) and in terms of the new matrix
elementsU0 = 1(2` + 2), U1 = 2(2` + 3), U2 = 3(2` + 4), . . . , and V0 = 2(` + 1),
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V1 = 2(`+ 2), . . ., we arrive at a much more transparent equation

det



U0 − V0Z U0Z

2M U1 − V1Z U1Z

2M − 2 U2 − V2Z U2Z

· · ·
4 UM−1 − VM−1Z UM−1Z

2 UM − VMZ


= 0 . (13)

Its roots form theM- and`-dependent(M+1)-pletsZj(M, `), j = 1, 2, . . . ,M+1 which
do not depend on the potential

Z1(0, `) = 1, Z1,2(1, `) = 1

2

(
3 ∓

√
1 + 4

`+ 2

)
, . . . . (14)

Having their values at our disposal, we shall be able to return to the original definition
Z = �C/D and insertC(E) = γD(E)− λe2 andD(E) = 1/(1 − λ�2) there, giving

γ� = Zj(M, `)+ λe2�(1 − λ�2). (15)

This is our second QE solvability condition: once we eliminatee2 by means of equation (11),
such a formula generalizes itsM = 0 predecessor (12) to an arbitraryM.

The value ofZ merely interrelates the energy (represented here by�), couplinge2 and
the formal shift of the Coulomb centreγ . Our M = 0 conclusions may be extended to
arbitraryM. In addition to our first QE condition (11) which specifies the QE-compatible
chargee2 ≡ e2(�), our second QE condition (15) may be interpreted as an equation
which defines the second QE-compatible and, correctly, non-negative ‘shift-of-screening’
γ = γ (�) in terms of the same optional variable or ‘parameter’�.

Explicit evaluation of the ‘auxiliary quantum numbers’Z is easy at the smallestM
(cf its s−wave sample in appendix B). BeyondM = 3, table 1 offers an illustration of
their numerical values. Let us underline an interesting empirical observation: all theseZ’s
remain real.

Table 1. Numerical rootsZj (M, 0) of the Hill determinants (13) atM 6 7.

M

0 1.000 000 0000
1 0.633 974 5960 2.366 025 404
2 0.467 911 1135 1.652 703 645 3.879 385 242
3 0.371 645 9640 1.285 817 504 2.865 589 376 5.476 947 156
4 0.308 515 4266 1.056 482 979 2.305 416 576 4.199 533 486

7.130 051 533
5 0.263 834 0609 0.898 149 9048 1.938 320 760 3.459 408 283

5.617 305 215 8.822 981 776
6 0.230 512 1099 0.781 793 0948 1.676 025 251 2.958 148 625

4.710 349 692 7.097 082 774 10.546 088 45
7 0.204 691 7866 0.692 481 5924 1.478 127 278 2.590 971 551

4.080 854 844 6.035 027 563 8.624 867 763 12.292 977 62
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4. The pairs of elementary bound states

In a manner underlined in [14] and re-illustrated in [15], there are many (e.g., perturbative
or numerical) applications of QE models where a real difficulty in their construction only
starts when one needs a multiplet of bound states. The attraction of such a methodological
challenge may be enhanced, in our specific screened Coulomb case, by an immediate
physical appeal of the feasiblity of a two-level simulation of a radiative (i.e. directly
measurable) quantum transition.

In the language of section 3, the construction of doublet is trivial—a pair of our QE-
compatibility equations (subscripted byJ = 1, 2) must be concatenated. A series of
changes of variable is suitable for such a purpose—its thorough description is relegated
to appendix C. In its notation withL = LJ and abbreviationY 2 = Y 2

J = (RjJ + SjJ ) LJ ,
two versions of equation (C2) may be converted into the two alternative (and independent)
definitions of the QE-doublet-compatible couplinge itself:

e4 = e4(J ) = 1 + YJ

Y 4
J

(RjJ + SjJ )
2 J = 1, 2. (16)

Introducing further a symbolaJ = RjJ /(RjJ + SjJ ) (with any jJ ’s from the segment
1, 2, . . . ,MJ + 1, see tables 2 and 3 for a numerical sample), the pair of the second
QE conditions (C6) reads

G = G(J ) = 1 − aJ Y
2
J

Y 4
J

(RjJ + SjJ )
2 J = 1, 2. (17)

As long as the physical ‘coupling’e4 and ‘shift’ G must remain state-independent, one
arrives at the final, mutually coupled compatibility conditions

e4(1) = e4(2) G(1) = G(2). (18)

They are easily convertible into the coupled polynomial equations for the ‘unknown’Y1

andY2, tractable by the standard Gröbner-basis method [16]. Alternatively, one might also
replace equation (18) by an equivalent pair

e4(1)/G(1) = e4(2)/G(2) G(1) = G(2) (19)

which is immediately reducible to a single equation: the first item is just a quadratic (i.e.
solvable) equation inY1 or Y2, while the second item remains a quadratic (i.e. solvable)
equation inY 2

1 or Y 2
2 . Nevertheless, an important merit of the former arrangement is that

we know the number of the roots in the complex plane at least. This precludes omission of
a solution due to a numerical rounding error.

In the unitsλ = 1 of appendix C, let us fix, say,̀= 0 and pick up, say,M = M1 = 0,
M = M2 = 1. We avoid theM2 = 1 ambiguity in (14) by taking just the smallerZ1(1, 0).
Then, both our alternative equations (18) and (19) fix, numerically, the same values of
G = 51.945 394 703 4780 and of the related charge,e4 = 25.770 091 388 6009. The
existence of at least one QE doublet of bound states is proved.

In a more systematic search for the further QE doublets, one may start from any
trial quantum numbers(M1, j1,M2, j2) or their two functionsZj1(M1, `) andZj2(M2, `).
We have found no obvious pattern in the existence/non-existence of the real and doublet-
compatible QE rootsG. For example, our search failed at

(M1, j1,M2, j2) = (0, 1, 1, 2), (0, 1, 2, 2), (0, 1, 2, 3), (0, 1, 3, 1)

etc, with the last failure(M1, j1,M2, j2) = (6, 7, 7, 8) sitting at the very end of our pre-
determined range. A complementary sample of a fewsuccesfulnumerical identifications of
the real QE doublets is displayed in table 3.
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Table 2. The positivity of differencesRj (M, 0) in equation (C1) atM 6 7.

M

0 3.000 000 000 0
1 5.366 025 404 3.633 974 596
2 7.532 088 886 50 6.347 296 355 4.120 614 758
3 9.628 354 036 8.714 182 496 7.134 410 624 4.523 052 844
4 11.691 484 573 3 10.943 517 021 0 9.694 583 424 7.800 466 514

4.869 948 467 00
5 13.736 165 939 1 13.101 850 095 1 12.061 679 24 10.540 591 717 0

8.382 694 785 5.177 018 224
6 15.769 487 890 0 15.218 206 905 2 14.323 974 748 9 13.041 851 375

11.289 650 308 8.902 917 226 00 5.453 911 55
7 17.795 308 213 3 17.307 518 407 5 16.521 872 721 9 15.409 028 449 0

13.919 145 156 11.964 972 437 0 9.375 132 237 00 5.707 022 38

Table 3. A sample of the semi-relativistic QE bound-state doublets, supported by the screened
Coulomb potential (3) at̀ = 0, energiesYJ = √

2(MJ + `+ 2) LJ (EJ ) and auxiliary quantum
numbersaJ = RjJ (MJ , `)/(2MJ + 2`+ 4).

Quantum numbers Energies Couplings

M1 j1 M2 j2 a1 a2 Y1 Y2 e4 G(γ )

0 1 1 1 0.750 0.894−0.671 846 71−0.760 523 23 25.770 092 51.945 395
0 1 2 1 0.750 0.942−0.697 576 90−0.840 588 35 20.434 620 42.909 415
0 1 4 1 0.750 0.974−0.718 920 14−0.917 243 35 16.835 542 36.678 199
0 1 5 1 0.750 0.981−0.723 924 32−0.936 801 17 16.083 311 35.359 031
0 1 7 1 0.750 0.989−0.729 648 37−0.959 994 12 15.261 404 33.910 198
1 1 2 1 0.750 0.942−0.821 480 27−0.872 319 88 14.112 377 31.342 168
1 1 2 3 0.894 0.515 0.482 234 64 0.564 397 82 986.701 65 527.237 04
1 2 2 1 0.606 0.942−0.303 878 15−0.345 518 89 2 938.934 4 3 985.747 0
1 2 2 2 0.606 0.793−0.537 032 31−0.598 439 10 200.378 69 357.211 72
6 6 7 8 0.556 0.317 0.250 348 58 0.266 381 96 81 487.410 62 898.949

5. Summary

We have demonstrated that a certain class of Pauli-type equations (cf equations (1)–(3))
may parallel its non-relativistic Schrödinger predecessors in possessing a few exceptional
elementary (i.e. QE) bound-state solutions. Within a more or less standard physical model
(namely a screened Coulomb interaction (3) [12]) we constructed these solutions in an
explicit form. In spite of our older and discouraging non-Coulombic experience in [11],
we picked up the same re-arranged Pauli–Schrödinger differential equation. Our present
extension of the class of forces preserved its simplified second-order differential form and,
less obviously, did not also violate the applicability of the standard power-series method.

We were able to show that the validity and preservation of the QE solvability smoothly
interconnects the non-relativistic (λ = 0) and semi-relativistic (0< λ � 1) kinematic
regimes. On a more technical level, our construction exhibits several satisfactory features:
the elementary form of wavefunctions (polynomials of degreeM + 1 pre-multiplied by the
correct asymptotical factor e−�r ), the elementary Taylor coefficients (= ‘Hill’ determinants
of dimensions6 M), etc. Also the related QE-solvable potentialsV (r) proved to be
specified in an uncomplicated manner: we succeeded in expressing their parametersα − δ
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as elementary functions of the single free variable�.
A formal reason for such (unexpected) simplicity lies in the underlying reducibility or

‘factorization’ of the pertinent ‘boundary condition’hM+1 = 0 into a universal (i.e. only
implicitly M-dependent) algebraic formula (cf, e.g., equation (15)) preceded by another,
potential-independent specification of certain auxiliary functions (≡ Zj ) of M. This may be
interpreted as a support and encouragement of a future continuation of the semi-relativistic
QE constructions: their complexity need not necessarily grow withM. Here, it was a
pleasant surprise to note such an effectiveM-independendence of our constructions, which
was quite unexpected and, perhaps, may be characteristic of a new role which might be
played by non-perturbative kinematic corrections.

A few further formal consequences of the separation of theM andV dependence were
also extracted. One of them lies in the possiblility of the alternative partial linearizations
of the underlying algebraic system of equations. This was shown to lead to several ‘non-
equivalent’ non-numerical specifications of the separate QE states. In a climax of our paper,
we have shown that the same potentialV (r) may even generate the two different QE states
at once. Unfortunately, the underlying doubly self-consistent specification of the non-trivial
multiplet solutions already ceases to be tractable by elementary means. Non-numerically,
we have only reduced it to a problem of determination of certain auxiliary roots of a
sixteenth-degree polynomial. A few samples of the resulting rigorous QE doublets were
tabulated.

In the light of the well know difficulty of making quantum mechanics at least
approximately compatible with relativistic kinematics [17, 9], we may conclude that our
present non-perturbative semi-relativistic QE constructions are encouraging. In contrast
to [11], no non-relativistic singularity of the typeM → ∞ has been detected. Along with
the smoothλ → 0 behaviour of our new QE states, the challenging problem of multiplets
also proved manageable. At the same time, the well known role of certain dynamical-
like Lie structures in the QE context (cf, e.g., the review [14]) stays unclear in the new
kinematic domain. Still, we may express a belief that a broader class of applications of
the QE solvability (namely, numerical tests, perturbatived interpolations, as well as straight
phenomenology [6]) may be expected to survive the introduction of a minimal relativity
into quantum mechanics.

Appendix A. The first QE condition as a biquadratic equation

At the given quantum numbersM and `, equation (11) assigns at most four different
(though, in general, complex) ‘energy candidates’� = �j, j = 1, 2, 3, 4 to the coupling
e2. Re-scaling, for simplicity,

�
(M,`)
j (E) = e2

2(M + `+ 2)
X2
j (A1)

we may immediately spot the two complex roots�3 and�4 as unphysical and, in the next
step, split equation (11) into the pair of relations

1 − η2X4
j + (−1)j Xj = 0 j = 1, 2 η2 = λe4

(2M + 2`+ 4)2
. (A2)

They may be understood as a single equation on the whole real axis, with the two real roots
X1 < 0< X2.

Equation (A2) provides an unambiguous numerical definition of the two physically
acceptable (i.e. real and positive) quantities (A1) such that 0< X2

1 < η < X2
2. At small η’s
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the squares of our newη-dependent roots may be expanded in the power series

X2
1 = 1 − 2η2 + 9η4 − 52η6 + · · ·

X2
2 = η−4/3 + 2η−2/3/3 − 1/3 + 28η2/3/81− · · ·

where, of course,η = η(e,M, `). Simultaneously, at large variablesη we may put
g = g1,2 = ±1/

√
η and derive the asymptotic series

X2
1,2 = g2 + g3/2 − g5/64+ g6/128− 9g7/4096+ O(g8).

Appendix B. Auxiliary parameters in the second QE solvability constraint: ans-wave
example

The compact polynomial structure of the Hill-determinant conditions (13) may be illustrated
by their ` = 0 special cases:

2 − 2Z = 0 M = 0

12− 24Z + 8Z2 = 0 M = 1

144− 432Z + 288Z2 − 48Z3 = 0 M = 2

2880− 11520Z + 11520Z2 − 3840Z3 + 384Z4 = 0 M = 3

... .

(B1)

Besides their above-mentioned single rootZ1(0, 0) = 1 and the pairZ1(1, 0) = (
3 −√

3
)
/2 ≈ 0.633 974 5960 andZ2(1, 0) = (

3+√
3
)
/2 ≈ 2.366 025 404, one may also easily

write down the triplet of roots of the cubicM = 2 equation (B1). It is best represented in
trigonometric form:

Z1(2, 0) = 2 − 2 cos
2π

9
≈ 0.467 911 1135

Z2(2, 0) = 2 − 2 sin
π

18
≈ 1.652 703 645

Z3(2, 0) = 2 + 2 cos
π

9
≈ 3.879 385 242

(B2)

although the more usual Cardano formulae also remain reasonably transparent, giving

Z3(2, 0) = 2 + 2−1/3 3
√

1 + i
√

3 + 21/3/
3
√

1 + i
√

3, etc.
In terms of the angleϕ such that tan3ϕ = √

5/3, an unexpectedly and unusually compact
representation of the auxiliaryZ’s also remains available atM = 3 and all the subscripts
j = 1, 2, 3, 4,

2 × Zj(3, 0) = 5 + (−1)entier [(j+4)/2]51/4
√√

5 −
√

8 cos(ϕ + π/6)

+(−1)entier [(j+1)/2]51/4
√√

8 sin(ϕ + π/3)+
√

5

+(−1)j51/4
√√

5 −
√

8 sinϕ .

An algebraic counterpart of this formula is already less convenient.
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Appendix C. A re-parametrization of the QE formulae

Our simultaneous parametrization of the chargee = e(�) (equation (11)) and of its QE-
compatible shiftγ = γ (�) (equation (15)) uses an input specification of the energy
E ∈ (−∞, 0) or of the exponent� = �(E) ∈ (0, 1/

√
λ). Such a parametrization

is not unique: an alternative QE construction may start from a re-defined coupling
e2 = e2(F,G) = √

G/(1 + F) and shift γ = γ = γ (F,G) = λF
√
G/(1 + F), i.e.

from a re-parametrized potential (3)

V (r) = −
[
λF + (

√
(1 + F)/G) r

]−1
.

In a preparatory step, let us introduce the further auxiliary constants

S = Zj(M, `)/
√
λ R = 2(M + `+ 2)/

√
λ− Zj(M, `)/

√
λ (C1)

and re-emphasize their potential-independent character. Each of them carries the information
contained in, and extracted from, equation (13). The value ofR (or S) may be used in
place of the triplet of integersj , M and `, as a unique characteristics of a selected QE
bound state. The positivity, an unexpected property of these ‘quasi-quantum’ numbers is
documented empirically in tables 1 and 2. Their range may be extended up to certain
Mmax> 7 if necessary—our hypothesis is thatMmax = ∞.

The core of our further effort will lie in the elimination of the energy variables, re-scaled
asE → K = √

λ�. The set of the pertaining QE conditions consists of the biquadratic
equation (11),

K4 − 2K2 − R + S

e2
K + 1 = 0 (C2)

accompanied by the cubic equation (15),

K3 + (F − 1)K − S e−2 = 0. (C3)

We may note thatλ, the measure of the smallness of the relativistic corrections, is only
present here viaR, S andF . For convenience, we shall work in unitsλ = 1.

Subtraction of equation (C2) from (C3) pre-multiplied byK eliminates both the fourth
and third powers ofK from the resulting new equation

(F + 1)K2 + R

e2
K − 1 = 0. (C4)

Also subtracting equation (C3) pre-multiplied byF + 1 from the new equation (C4) pre-
multiplied byK, we get rid of the third power ofK in the second old equation (C3):

RK2 − e2F 2K + S (1 + F) = 0. (C5)

After a slight modification of variables,K → L = K/e2 ande → G = (1+F) e4, equation
(C4), namely

GL2 + RL− 1 = 0 (C6)

becomes complemented, via an analogous subtraction procedure, by the linear relation

(R2 +GF 2) L = R + (1 + F)2 S. (C7)

In the final step, a supplementary, independent linear definition of the ‘energy’L is obtained:

[R + (1 + F)2 S] L = F 2 − (1 + F)2R S/G (C8)

and makes our goal virtually achieved; once we abbreviate0 = GF 2/R2 and introduce
another positive auxiliary functionσ = σ(F ) = (1 + F)2S/R, an easy elimination ofL
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results in the single QE-compatibility condition formulated as a restriction imposed upon
the0’s themselves:

(0 + 1) (0 − σ) =
(

1 + σ

F

)2

0. (C9)

The requirement of positivity makes the root0 = 0(F) unique

20 =
(
σ + 1

F

)2

+ σ − 1 + (σ + 1)

√(
σ + 1

F 2

)2

+ 2

(
σ − 1

F 2

)
+ 1 σ = σ(F ) .

(C10)

It even satisfies a slightly stronger inequality0 > σ > 0 and specifies the correct QE
couplinge4 = 0R2/(1 + F)F 2 as well as the related bound-state energyE:

E = − 0 − σ

1 + σ + (1 + F)F
(C11)

i.e. E = −(1 − RL)/(F + RL), with the slightly simpler subexpression

RL = σ(F )+ 1 + F 2σ(F )

σ(F )+ 1
+

√
(σ (F )+ 1 + F 2)2 − 4F 2 .

We may note that the energyE is defined as a closed function of the parameterF so that,
in section 4, the ‘shift’F = γ /(λe2) may play the same role as the exponent� did in the
formulae of section 3.
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